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We apply a level set formulation to the problem of surface ad-
vancement in a two-dimensional topography simulation of deposi-
tion, etching, and lithography processes in integrated circuit
fabrication. The level set formulation is based on solving a Hamil-
ton-Jacobi type equation for a propagating level set function, using
technigues borrowed from hyperbelic conservation laws. Topologi-
cal changes, corner and cusp development, and accurate determina-
tion of geometric properties such as curvature and norrmnal direction
are naturally obtained in this setting. The equations of motion of a
unified madel, inctuding the effects of isotropic and unidirectional
deposition and etching, visibility, surface diffusion, reflection, and
matertal dependent etch/depaosition rates are presented and
adapted to a level set formulation. The development of this model
and algorithm naturally extends to three dimensions in a straightior-
ward manhner and is described in part Il of this paper (in
press).  © 1995 Academic Press, Inc.

I. INTRODUCTION

fn this paper. we develop a fevel set formulation to simufated
deposition, elehing, and lithography in integrated circuit Tabri-
cation. OQur central coneern is an accurate, stable, and efficicnt
technigue Tor swrlace advaneement due to complex niotion
which, under ditferent physical elfects, may include effects of
anisotropy, visibility conditions. and material-dependent propa-
gation rates. In this paper, which focuses on a two-dimensional
simulation, and the accompanying paper ‘A Level Set Ap-
proach o a Unified Model for Etching, Deposition, and Lithog-
raphy 11" which extends ihiis work to theee-dimensional topo-
graphic simulation, the validity of various physical models for
the micrefabrication project will not be examined. Instead, we
hope o provide a robust numerical approach to these phepom-
¢na which can then be wsed to systenatically examine vari-
ous models.

A variety of numetical algorithins are available to advance
frowts in etching, deposition, and lithography processes. These
methods are not upigue to such simulations and, in fact, are in
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use in such areas as dendritic growth and solidification, flame/
combustion models, and NMuid interfaces, Roughly speaking,
they fall into (hree general categories:

* Murker/string methods. In these methods, a discrete param-
etrized version of the interface boundary is used. In two dimen-
sions, narker particles are used; in three dimensions, a nodal
triangularization of the interface is often developed. The posi-
tions of the nodes are then updated by determining front infor-
mation about the normals and curvature from the marker repre-
sentation, Such representations can be quite accurate; however,
fimitations exist for complex motions. To begin, if corners
and cusps develop in the evolving front, markers usually form
“swallowtail’” solutions which must be removed through de-
looping technigques which attempt to enforce an entropy condi-
tion inherent in such motion (see [27]). Second, topological
changes are difficult to handle; when regions merge, some
markers must be removed. Third, significant instabilities in the
front can resuit, since the underlying marker particle motions
represent a weakly ill-posed initial value problem (see [20]).
Finally, extensions of such methods to three dimensions require
additional work.

s Cell-based methods, Iy these methods, the computational
domain is divided into a set ol cells which contain *‘volume
fractions.”” These volume fractions are numbers between 0 and
1 and represent the fraction of each cell containing the physical
material. At any time, the front can be reconstructed from these
volume (ractions. Advantages of such technigues include the
ability to easily handle topological changes, adaptive mesh
methods, and cxtensions to three dimensions. However, deter-
mination of geometric quantitics such as normals and curvature
can be inaccurate.

* Characteristic methods. In these methods, ‘‘ray-trace’’-
like techniques are used. The characteristic eguations for the
propagating interface are used, and the entropy condition at
forming corners (sce {27]) is formally enforced by constructing
the envelope of the evolving characteristics. Such methods
handte the looping problems more naturally, but they may be
complex in three dimensions and require the adaptive addition
and/or removal of rays. which can cause instabilities and/for
over-smoothing.
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Level set methods, introduced in [20], offer a highly robust
and accurate method for tracking interfaces moving under com-
plex motions. Their major virtue is that they naturally construct
the fundamental weak solution to surface propagation posed by
Sethian [26, 27]. They work in any number of space dimensions,
handle topological merging and breaking naturally, and are
easy to program. They approximate the equations of motion
for the underlying propagating surface, which resemble Hamil-
ton-Jacobi equations with parabolic right-hand sides. The cen-
tral mathematical idea is to view the moving front as a particular
level set of a higher dimensional function. In this setting, sharp
gradients and cusps are easily tracked, and the effects of curva-
ture may be easily incorporated. The key numerical idea is to
borrow the technology from the numerical solution of hyper-
bolic conservation laws and transfer these ideas to the Hamil-
ton—Jacobi setting, which then guarantees that the correct en-
tropy satisfying solution will be obtained.

In this paper, we apply these level set techniques to etching,
deposition, and lithography problems in two space dimensions.
The resulting numerical method allows one to accurately predict
two-dimensional profile evolution, naturally taking into account
such effects as incident angles, masks, yield functions, visibil-
ity, and anisotropy on the surface motion. Due to the use of
conservative upwind schemes, the method selects the correct
weak solution: where shocks in the tangent occur, the necessary
entropy condition is invoked; at outward-facing corners the
correct rarefaction fan solution is built. The method is second-
order accurate in the motion of the front and is of the same
computational work as cell and marker particle methods; that
is, the work is a constant times the number of points which
characterize the evolving front. The technique extends in a
completely straightforward manner to three dimensions with
minimal change to the algorithm; the three-dimensional version
will be reported on elsewhere [2].

The outline of this paper is as follows. In Section I, we
describe the basic level set algorithm applied to propagating
interfaces. In Section I, we give a unified set of equations
for the motion of an interface under deposition, etching, and
lithography. In Section ITE, we give the reformulation of these
equations in the level set perspective. In Section IV, we discuss
some details of the numerical implementation. In Section V,
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we perform a series of numerical tests to verify the method,
and in Section VI, we apply the method to three different
problems. In Section VI, future work is discussed.

2. NUMERICAL ALGORITHMS FOR
PROPAGATING FRONTS

2,1. Entropy Conditions and Curvature

The fundamental aspects of front propagation in our context
can be illustrated as follows. Let (0) be a smooth, closed
initial curve in R?, and let y(¢) be the one-parameter family of
curves generated by moving y(0) along its normal vector field
with speed F(K). Here, F(K) is a given scalar function of the
curvature K. Thus, n - x, = F(K), where x(s, t) is the position
vector parameterized by s at time ¢, and » is the unit normal
to the curve.

Consider a speed function of the form | — &K, where ¢ is
a constant. An evolution equation for the curvature K (see [27])
is given by

K, = ek, + eK* — K%, (H

where we have taken the second derivative of the curvature X
with respect to arclength «. This is a reaction—diffusion equa-
tion; the drive toward singularities due to the reaction term
(eK® — K?) is balanced by the smoothing effect of the diffusion
term (£K,,). Indeed, with ¢ = 0, we have a pure reaction
equation K, = —K2 In this case, the solution is K(s, ) =
K(s, 0)/(1 + rK(s, 0)), which is singular in finite ¢ if the
initial curvature is anywhere negative. Thus, corners can form
in the moving curve when £ = 0.
As an example, consider the periodic initial cosine curve

y(@) = (—s, [ + cos 27s5]/2) (2)

propagating with speed F(K) = | — &K, € > 0. As the front
moves, the troughs at s = n + &, n = 0, £1, =2, ... are
sharpened by the negative reaction term (because K << 0 at
such points) and smoothed by the positive diffusion term (see
Fig. 1a). For £ > 0, it can be shown {see [27, 20]) that the
moving front stays C*.

A

A

5

=1 —-0.25K
Fig.la.

FIG. 1.

Swallowtail(F = 1.0)
Fig.1b

Entropy Satisfying(F = 1.0)
Fig.le

Propagating cosine curve,
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Shock
Fig.2a
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Rarefaction Fan
Fig.2b

F1G. 2. Front propagating with unit normal speed.

On the other hand, for ¢ = 0, the front develops a sharp
corner in finite time as discussed above. In general, it is not
clear how to construct the normal at the corner and continue
the evolution, since the derivative is not defined there. One
possibility is the ‘‘swallowtail’’ solution formed by letting the
front pass through itself (see Fig. 1b). However, from a geomet-
rical argument it seems clear that the front at time ¢ should
consist of only the set of all points located a distance ¢ from
the initial curve. (This is known as the Huygens principle con-
struction, see [27]). Roughly speaking, we want to remove the
“‘tail”” from the ‘“‘swallowtail.”’ In Fig. 1¢, we show this alter-
nate weak solution. Another way to characterize this weak
solution is through the following ‘‘entropy condition’’ posed
by Sethian (see [27]): If the front is viewed as a burning flame,
then once a particle is burnt it stays burnt. Careful adherence
to this stipulation produces the Huygens principle construction.
Furthermore, this physically reasonable weak solution is the
formal limit of the smooth solutions & > 0 as the curvature
term vanishes (see [27]).

As further illustration, we consider the case of a V-shaped
front propagating normal to itself with unit speed (F = 1). In
[26], the link between this motion and hyperbolic conservation
faws is explained. In Fig. 2a, the point of the front is downwards;
as it moves inwards with unit speed, a shock develops as the
front pinches off, and an entropy condition is required to select
the correct solution to stop the solution from being double-
valued and to produce the limit of the viscous case. Conversely,
in Fig. 2b, the corner in the front is upwards; in this case the
unit normal speed results in a rarefaction fan which connects
the left state with slope +1 to the right state which has slope
— 1. Extensive discussion of the role of shocks and rarefactions
in propagating fronts may be found in [26].

The key to constructing numerical schemes which adhere to
both this entropy condition and rarefaction structure comes
from the link between propagating fronts and hyperbolic conser-
vation laws. Consider the initial front given by the graph of
fCx), with f and f' periodic on [0, 1], and suppose that the
propagating front remains a function for all time. Let ¢ be the
height of the propagating function at time ¢, thus ¢(x, 0) =
f(x). The normal at (x, ¢) is (¢,, —1), and the equation of

motion becomes &, = F(K)1 + ¢5"2. Using the speed function
F(K) = 1 — K and the formula K = — ¢ /(1 + &1)*, we get

Pu
1+ ot

d—(1+ )" =¢ 3

Differentiating both sides of this equation yields an evolution
equation for the slope u = dd/dx of the propagating front,
namely

u+ [—(1+ ”l)m]x = S[l ixuz]x' G

Thus, the derivative of the Hamilton—Jacobi equation with para-
bolic right-hand side for the changing height ¢ is a viscous
hyperbolic conservation law for the propagating slope u (see
[29]). The entropy condition in [27] is in fact equivalent to the
one for propagating shocks in hyperbolic conservation laws.
Thus, we exploit the numerical technology from hyperbolic
conservation laws to build consistent, upwind schemes which
select the correct entropy conditions. For details, see [20, 28].

Our goal then is to develop a front propagation scheme built
on these curvature/viscosity ideas. Before doing so, we must
extend the above ideas to include propagating fronts which are
not easily written as functions. This is the level set idea intro-
duced by Osher and Sethian [20].

2.2. Level Set Methods

Given a moving closed hypersurface I'(r), that is, T": [0, «)
— R we wish to produce an Eulerian formulation for the
motion of the hypersurface propagating along its normal direc-
tion with speed F, where F can be a function of various argu-
ments, including the curvature, normal direction, etc. The main
idea is to embed this propagating interface as the zero level
set of a higher dimensional function ¢. Let é(x, r = 0), where
x € RY is defined by

d(x, t = 0y = *+d, (5)
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where d is the distance from x to I'(z = 0), and the plus
(minus) sign is chosen if the point x is outside (inside) the
initial hypersurface I'(r = 0). Thus, we have an initial function
¢dix, t = 0):RY — R with the property that

Tt = 0) = (x[dlx, t = 0). (%)

Qur goal is to now produce an equation for the evolving function
¢{(x, t) which contains the embedded motion of I'(¢) as the level
set ¢ = 0. Let x(r), t € [0, o) be the path of a point on the
propagating front. That is, x(r = 0) is a point on the initial
front ['(t = 0) and x, - n = F(x(H). Since the evolving function
¢ is always zero on the propagating hypersurface, we must have

H{x(n), 1) = 0. (7

By the chain rule,

¢+ Vox(n, 1) - x'@) = 0. (&)

Since F already gives the speed in the outward normal direction,

then x'(f) - n = F where n = V¢/|Ve|. Thus, we then have
the evolution equation for ¢, namely

¢, + F|Vd|=0 &)

Px, 1 =0) 10y

given.

We refer to this as a Hamilton—Jacobi “‘type’” equation because,
for certain forms of the speed function F, we obtain the standard
Hamilton—Jacobi equation.

(a)

(c)

Ter)

In Fig. 3 {taken from [30]) we show the outward propagation
of an initial curve and the accompanying motion of the level
set function ¢. In Fig. 3a we show the initial circle, and in Fig,
3b we show the circle at a later time. In Fig. 3c we show the
initial position of the level set function ¢, and in Figure 3d we
show this function at a later time.

There are four major advantages to this Eulerian Hamilton—
Jacobi formulation. The first is that the evolving function ¢(x,
1 always remains a function as long as /" is smooth. However,
the level surface ¢ = 0, and hence the propagating hypersurface
I'(r), may change topology, break, merge, and form sharp cor-
ners as the function ¢ evolves (see [20]).

The second major advantage of this Eulerian formulation
concerns numerical approximation, Because ¢(x, f) remains a
function as it evolves, we may use a discrete grid in the domain
of x and substitute finite difference approximations for the
spatial and temporal derivatives. For example, using a uniform
mesh of spacing &, with grid nodes (i, §), and employing the
standard notation that ¢} is the approximation to the solution
$(ih, jh, nA1), where At is the time step, we might write

¢,’.‘."“— n
= TP =0, (11)

Here, we have used forward differences in time, and let
V% represent some appropriate finite difference operator for
the spatial derivative. As discussed above, the correct entropy-
satisfying approximation to the difference operator comes from
exploiting the technology of hyperbolic conservation laws. Fol-
lowing [20], given a speed function F(K), we update the front

= Vixyt=0)

FIG. 3. Propagating circle.
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by the following scheme. First, separate F(K) into a constant
advection term F, and the remainder F\(K), that is,

F(K) = Fy + Fi(K). (12)

The advection component Fy of the speed function is then
approximated using upwind schemes, while the remainder is
approximated using central differences. In one space dimension
with positive F, we have

¢l = ! — ArFy[(max(D; , 0)* + min{D{)H'"
— |Fi(K)V ]

(13)

Extension to higher dimensions are straightforward; we use the
version introduced in [33].

The third major advantage of the above formulation is that
intrinsic geometric properties of the front may be easily deter-
mined from the level function ¢. For example, at any point of
the front, the normal vector is given by

_ Vo
Vol

n (14)

and the curvature is easily obtained from the divergence of the
gradient of the unit normal vector to front, i.e.,

2 _ 2
_ St~ 200y + b (15)

_o. Ve
k=v (P! + )"

Vol

Finally, the fourth major advantage of the above level set
approach is that there are no significant differences in following
fronts in three space dimensions. By simply extending the array
structures and gradients operators, propagating surfaces are
easily handled.

As an example of the application of level set methods, con-
sider once again the problem of a front propagating with speed
F(K) = 1 — K. In Fig. 4, we show two cases of a propagating
initial triple sin curve. For 2 small (Fig. 4a), the troughs sharpen
up and will result in transverse lines that come too close to-
gether. For £ large (Fig. 4b), parts of the boundary with high
values of positive curvature can initially move inwards, and
concave parts of the front can move quickly up.

Since its introduction in [20], the above level set approach has
been used in a wide collection of problems involving moving
interfaces. Some of these applications include the generation
of minimal surfaces {6], singularities and geodesics in moving
curves and surfaces in {7], flame propagation [23, 38], fluid
interfaces [3, 5, 19], and shape reconstruction [16]. Extensions
of the basic technique include fast methods in [1], level set
techniques for multiple fluid interfaces and triple point junctions
in [32], and grid generation in [30, 31]. The fundamental Eu-
lerian perspective presented by this approach has since been
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FIG. 4. Propagating triple sine curve.

adopted in many theoretical analyses of mean curvature flow,
in particular, see [8, 4].

3. EQUATIONS OF MOTION FOR DEPOSITION,
ETCHING, AND LITHOGRAPHY

Qur goal is now to build the speed function F for deposition,
etching, and lithography in the level set equation of motion

¢+ F|IVh| =0 (16)

dlx, 1t =0) given. (17
Note that F is the speed in the normal direction. Our approach
is to write the normal speed function as the superposition of
the three main physical effects:
F= Fl')epuiilion + FEmhing + Fthngraphy- (]8’
Of course, all effect do not take place at once; however, the
design of the numerical algorithm allows various combinations
of terms to be ‘‘turned on’’ during any time step of the sur-
face advancement.
The underlying physical effects involved in etching, deposi-
tion, and lithography are quite complex; much of the following
summary is obtained from the excellent overviews in [24, 25,

35, 36, 17, 22]. The effects may be summarized briefly as
follows:

= Deposition. Particles are deposited on the surface, which
causes build-up in the profile. The particles may either isotropi-
cally condense from the surroundings (known as chemical or
“wet”’ deposition), or be deposited from a source. In the latter
case, we envision particles leaving the source and depositing
on the surface; the main advantage of this approach is increased
control over the directionality of surface deposition. The rate
of deposition, and hence growth of the layer, may depend on
source masking, visibility effects between the source and sur-
face point, angle-dependent flux distribution of source particles,
and angle of incidence of the particles relative to the surface
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normal direction, reflection of deposited particles, and surface
diffusion effects.

* Etching. Particles remove material from the evolving pro-
file boundary, The material may be isotropically removed,
known again as chemical or **wet’’ etching, or chipped away
through reactive ion etching, also known as ‘‘ion milling.”
Similar to deposition, the main advantage of reactive ion etching
is enhanced directionality, which becomes increasingly im-
portant as device sizes decrease substantially and etching must
proceed in vertical directions without affecting adjacent fea-
tures, As described in [34], the total etch rate consists of an
ion-assisted rate and a purely chemical etch rate due to etching
by neutral radicals, which may stiil have a directional compo-
nent. As in the above, the total etch rate due to wet and direc-
tional milling effects can depend on source masking, visibility
effects between the source and surface point, angle-dependent
flux distribution of source particles, the angle of incidence of
the particles relative to the surface normal direction, reflection/
re-emission of etching/milling particles, and surface diffu-
sion effects.

* Lithography. The underlying material is treated by an elec-
tromagnetic wave which alters the resist property of the mate-
rial. The aerial image is found, which then determines the
armount of crosslinking at each point in the material which then
produces the etch/resist rate at each point of the material. A

Visibility Angle
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profile is then etched into the material, where the speed of the
profile in its normal direction at any point is given by the
underlying etch rate. The key factors that determine the evolv-
ing shape are the etch/resist profile and masking effects.

In the rest of this section, we formalize the above.

3.1. Initial Position and Setup

We consider a periodic initial curve y(s), 0 = 5 = 1, where
x(5) is a point in & on y(s). We also consider a source Z given
as a curve above the initial curve, and write Z(x) referring to
the height of the source at the point x.

For both etching and deposition, define the source ray to be
the ray leaving the source and aimed towards the surface profile.
Let 4 be the angle variation in the source ray away from the
¥ axis; ¥ positive will correspond to an angle clockwise from
the positive y axis. Let n be the normal vector at a point x on
the surface profile, and & the angle between the normal and the
source ray.

In Fig. 5, we indicate these variables. Masks, which force
flux rates to be zero, are indicated by heavy dark lines on the
initial profile. The visibility angle Y is indicated by the region
between the heavy dashed lines. Our goal is to write the effects
of deposition, etching, and lithography on the speed F at a
point x on the front (s, 1) obtained by updating the initial curve.

FIG. 5. Variables and setup.
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3.2. Deposition

We consider three separate types of deposition:

* FU (Isotropic deposition). Uniform deposition.

* F§: (Unidirection deposition). Deposition in a particular
direction, based on the angle of the incoming stream.

* F2, (Source deposition). Deposition radiating from a
point source.

In Fig. 5, we generalize all of these effects as the *‘source.”
Thus, the line source as shown in the figure may consist of
locations which emit either unidirectional deposition or point
source deposition.

The above terms may assembled as

— D 0 Doy
FDcposi(icn - FDcposi[ion(Flsns FUnis FSOu)a

(19)

that is, the deposition speed may depend on isotropic, unidirec-
tional, or source deposition. )

Let us now change notation and let My, .-, be one if the point
x" on the source is visible from the point x on the profile, and
zero otherwise. Let r be the distance from x to x’, and, finally,
let & be the unit vector at the point x’ on the source pointing
towards the point x on the profile. Then we may refine the
above terms as:

3.2.1. Isotropic Deposition
F{, = R Fluxf,. (20)

Here, RY,, is the rate of growth and Fluxf.(x) is the isotropic
flux function.

3.2.2. Unidirectional Deposition

Fi = Rbi(x)My, o Fluxfiy(r, , 6, x)(n - @). (21
Here, R5, is the rate of growth, and Fluxgu{(r, ¢, 8, x) is the
unidirectional flux function, which may depend on the distance

r from x to the source, the emission angle ¢, the angle of
incidence #, and the starting point x'.

3.2.3. Source Deposition

F2y = RE(0) [ Floxgu(r, h 6, OMy(n - @) do. (22)

Here, the integral is over all angles ¢ between —#/2 and 7/
2, RE,, is the rate of growth, and Flux2,,(r, 4, 8, x) is the flux
function. A typical flux function might include the effects of
sputter deposition and be of the form cos"(A#), where #n is a
constant and || = 27A.
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3.3. Etching

In this formulation, the equations of etching are quite similar;
we include them for the sake of completeness. We consider
three separate types of etching:

s Ff, (Isotropic etching). Uniform etching. This may be a
function of the underlying material.

» FE; (Unidirection etching). Etching in a particular direc-
tion, based on the angle of the incoming stream.

« FE. (Source etching). Etching radiating from a point
source, including ion-milling and transport of neutral radicals.

The above terms may assembled as

Fﬁtching = FE[ching(Fﬁus Fﬁ‘nia Fg:ou); (23)
where again we may refine the above terms as:
3.3.1. Isotropic Friching
Ff, = REFluxg,. (24)

Here, RE, is the etch rate based on the isotropic flux function
Flux£,(r).

3.3.2. Unidirectional Erching

ani = R{:J'ni(x)MY(x.I’JF]uxﬁni(rs l,ll, 61 x)(n ' Ct') (25)
Here, RY, is the etch rate, and Flux§,(r, ¢, 6, x) is the vunidirec-
tional flux function, which may depend on the distance r from
X to the source, the emission angle i, the angle of incidence
8, and the starting point x. A typical flux function might be of
the form cos"(Ay), where n is a constant and [ < 27A.

3.3.3. Source Eiching

w2
F= R [ Fluxku(r, g OMyeo(n - @) do. 26)

Here, the integral is over all angles ¢ between —n/2 and 7/
2, RE, is the rate of growth, and Fluxf,(r, . 6, x) is the
flux function.

3.4. Lithography

The construction of the speed function for lithographic cases
is extremely straightforward if one assumes that the etch rate
is given. Typically, an aerial image is found using a simulator
such as SPLAT [37], which, together with a program such as
BLEACH [37], provides the etch rate at each point of the
material. Since the etch rate is provided everywhere in the
material, we may simply write
27)

Fl.il.hogr‘dphy = RLith1

where the etch rate Ry, is supplied by the simulator.
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3.5. Other Effects

In etching and deposition, additional effects can play an
important role in the evolving profile, These include:

* Surface migration. Migration of particles as they collide
with the interface. This causes a diffusion-like term which
tends to diffuse large deposition peaks. Given the above speed
function F for surface motion, one can think of two ways to
include the effects of surface diffusion/migration. One is to
simply modify the speed function by the term 1 — &K, where
K is the local curvature. As discussed in Section TI, this has
the effect of diffusing the front. The second way is to obtain
a more accurate representation of the diffusion term as follows,
Given a curve x(s) in R?, we imagine that a scalar function g(s)
is defined on that curve. We want to solve the diffusion equation
g = &g, where s is differentiation with respect to arc-length.
Clearly, the limit as time approaches infinity is a constant value
of g along the curve x(s). Thus, we can modify the speed
function £ by solving the above diffusion equation on the front.

* Re-emission/reflection. Some of incoming flux/neutral rad-
icals may not stick to the surface, but instead be reflected/re-
emitted, The fraction of particles that are not reflected/re-emit-
ted is known as the “‘sticking probability’’ and varies between
0 and t. Thus, a sticking probability of unity corresponds to
the case under study above. For sticking probabilities less than
unity, and depending on the surface physics, the re-emission
can be either specular or diffusive. Thus, each point on the
evolving profile may act as additional source when viewed
from other visible sites on the front. This can be set up as an
integral equation for the total source flux at a point, depending
on the seen visible angle and probability flux re-emission distri-
bution. For details see the derivation in [34] and the calculations
in [18]. This integral yields a dense, non-symmetric matrix
which needs to be solved at every time step in order to calculate
the correct flux to advance the front. In two dimensions this is
tractable; in three dimensions the problem is daunting and
requires significant resources.

4. FUNDAMENTAL IDEAS OF IMPLEMENTATION

Here, we discuss the numerical implementation of the above
equations of motion in the level set formulation given by Eq.
(16), using the version of the numerical approximation of Eq.
(13) given in {33]. For details we refer the reader to [28].

4.1. The Narrow-Band Formulation

The main issue in the level set approach is the extension of
the speed function F given by Eq. (18) to all of space in order
to move all the level sets, not simply the zero level set on
which the speed function is naturally defined. While this may
be straightforward in some cases (such as in lithography, see
below), it is not efficient, since one must perform considerable
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computational tabor away from the front to advance the other
level sets.

Consequently, we adopt the approach introduced in {6], used
in recovering images in [16], and analyzed extensively in [1],
and focus our computational effort in a narrow band about the
zero level set. We only update the values of the level set
function ¢ in this thin zone around the interface. Thus, in two
dimensions, an O(N?) calculation, where N 1s the number of
grid points per side, reduces to an Q(kV) calculation, where k
is the number of celis in the narrow band. Typically, this is
considerably faster than marker particle methods, due to the
need for many marker points per mesh cell in order to obtain
acceptable accuracy. As the front moves, the narrow band must
occasionally be rebuilt (known as ‘‘re-initialization’”) of the
interface. For details see [6, 16, 1].

Briefly, the entire two-dimensional grid of data is stored in
a square array. A one-dimensional object is used to keep track
of which points in this array correspond to the tube, and the
values of ¢ at those points are updated. When the front moves
half the distance towards the edge of the tube boundary, the
calculation is stopped, and a new tube is built with the zero
level set interface boundary at the center. Details on the accu-
racy, typical tube sizes, and number of times a tube must be
rebuilt may be found in [1].

4.2. Lithography

The application of the level set approach to lithography is
straightforward, since the etch/resist rate at each grid point is
supplied as input. Some calculations of lithographic problems
exploiting the level set/conservation law of [20] were made by
Helmsen (see [11, 10]) studying various etch functions from
different aerial images, including thin film effects.

In the case of lithography, as mentioned above, we use a
narrow band approach, as well as a second-order in space
conservative advancement scheme as outlined in [20], modified
as in [33]. This yields a method which is both considerably
faster than the full matrix approach and less diffusive than the
first-order scheme used in [10]; the difference between the two
methods is discussed in detail in the results section.

4.3. Etching and Deposition

To advance the front according to etching/deposition, we
distinguish between local variables, which are easily calculated
at each prid point within the narrow band, and front-based
extension variables, which are most naturally defined only at
the moving interface. The general philosophy is to use values of
local variables wherever they can be calculated, and extension
variables from the front to the grid points in the narrow band
only when necessary. Once all the variables are assembled at
each grid point (those obtained from local calculations and
those obtained by extensions), the speed function in Eq. (18)
is then evaluated.

Local variables such as surface normals and curvature are
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easily calculated from the grid information as discussed exten-
sively in [33]. The main idea is to construct at each grid point
the local variables for the level set passing through that grid
point. Thus, if at grid point (i, j) the value of ¢ is ¢y, then we
find the normal vector and curvature of the level surface passing
through that grid point whose level value is ¢b. The values of
¢ at each grid point will then be updated by evaluating the
speed function at the grid using the values of the local variables;
this results in an approximation of the updated position of the
zero level set corresponding to the real front.

Variations in etch rate as a function of material properties
are local variables, and are easily handled by marking the given
material properties at each grid point within the tube. Wide
variations in the etch rate are easily handled.

The main front-based extension variable that must be deter-
mined is the visibility at a given point x of the interface. That
is, we must construct values for the visibility function at each
grid point, even though it only has real meaning for points on
the zero level set corresponding to the interface. This is done
as follows. At each grid point above the interface we compute
the seen angle relative to the zero level set, and use this value
of the visibility term at that point. At each point below the
interface, previous values are used to determine the appropriate
speed; those values are directly employed as the visibility values
for the new position. This technique yields the visibility angles
at each grid point in the narrow tube, which is then used to
evaluate the full speed function in Eqg. (18).

Variations in etch rate as a function of material properties
are easily handled by marking the given material properties at
each grid point within the tube. Of course, wide variations in
the etch rate are easily handled.

Masks are handled by requiring that no motion be executed
below a mask; this is accomplished by creating a new tube
matrix whenever updated which is reset to old values at grid
points that are masked.

4.4. Updating the Front

We update the front using a second order in space scheme
as described in [20, 28]. In the one-dimensional case, the first-
order scheme in the case of speed F = 1 is given by

¢t = @I — Arf(max(D7, 0¥ + min(D;, 0))"].  (28)
A second-order version is provided by
$1 = @7 — Ar[(max(4, 0) + min(8, 0))"],  (29)
where
A= D7 + i, i) (30)
B=0; =m0, @31
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where D™, D™, and D*™ are backwards, centered, and forward
second-order difference operators, and the switch function m
is given by

x i |x] =y

. fxy=0
y iffx[>]yl

mix,y) = (32)

{0 }oifxy <.

The construction of the two-dimensional version of this
scheme, using operator splitting is straightforward. We have

1l = 2 — At[(max(4, 0) + min(B, 0)

(33)
+ max(C, 00 + min(D, 0y,
where
Ax
A =Dy + S mDP Dy (34)
A
B = D;"’X — ?xm(Da;x+x, Di}-x—x) (35)
L Ay e pabey
C=Dp + = mDy™, Dy (36)
D=Dir— % m(DFYe DY), 37

where D%, D™ and DY are backwards, centered, and
forward second-order difference operators in x; similar expres-
sions hold in the y direction. The switch function s is defined
the same as above. Extension to three dimensions is straightfor-
ward and discussed in detail in [2].

5. NUMERICAL TESTS OF METHOD

In this secticn, we perform numerical tests to verify the
accuracy and efficiency of the method.

5.1. Deposition
5.1.1. Source Deposition

‘We begin by studying source deposition into a trench. In Fig.
6 we take a deposition source above a trench, where deposition
material is emitted from a line source from the solid line above
the trench. In this experiment, the deposition rate is the same
in all directions. The effects of shadowing are considered. In
Fig. 6a, we show results for 40 computational cells along the
width of the compute region (between the two vertical dashed
lines, Fig. 6b has 80 cells, and Fig. 6¢ has 160 cells. The time
step for all three calculations is Ar = 0.00623. The calculations
are performed with a narrow band tube width of six cells on
either side of the front. There is little change between the
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80 Cells 160 Cells
Fig.8b Fig.6e

FIG. 6. Source deposition into wench,

calculation with 80 cells and the one with 160 cells, indicating
that the solution is converged.

As the walls pinch toward each other, the seen visible angle
decreases and the speed diminishes.

Next, in Fig. 7, we study a deposition problem in which a
cavity on the right is hidden from the deposition source. This
cavity grows very slowly, and material fills above it until it is
shut off. The calculation is presented on a grid with 160 cells
in the horizontal direction and again a tube width of six cells
on each side of the interface.

5.1.2. Directional Deposition

Next, we consider directional deposition. Material emits from
the line source at an angle of 30° from the vertical. In Fig. 8,
we show results at various times, starting with the initial state.
Due to the effects of shadowing, the profile develops bumps
as it evolves,

5.1.3. Wer/Chemical Deposition

Finally, for completeness we consider the case of wet/chemi-
cal deposition applied to the above cavity, in Fig. 9, we advance
the profile in its normal direction at unit speed.

A A

FIG. 7. Source deposition into cavity.

T 7 T —==7

b

T=00
Fig.8a.

FIG. 8. Directional deposition iato cavity.

5.2. Etching
5.2.1. Source Etching

We begin by considering source etching into a trench. The
dark line again acts as a line source of etching material, evenly
distributed in all angles. Visibility effects are considered. In
Fig. 10a, we show the results with 40 horizontal cells; Fig. 10b
has 80 cells and Fig. 10c has 160 cells. There is little difference
berween the last two figures, indicating that the resulis are
converged. In this example there is no yield variation in the
eich rate as a function of angle of incidence, thus corners
immediately smooth out, since the correct rarefaction fan is
built into this case {see [27]).

Next, in Fig. 11, we study the etching problem in which a
cavity on the right is hidden from the etching source. The lip

=]

FIG. 9. Chemical deposition into cavity.



138

A NS S e
40 Cells 160 Celis
Fig.10a. Fig.10b Fig.10c

FIG, 10. Source etching into trench.

of the cavity is etched away until it breaks through, revealing
the full expanse of the region. Source integration is over the
source length and includes distance dependence.

5.2.2. Directional Etching

Next, we consider directional etching. Material emits from
the line source at an angle of 30° from the vertical. In Fig. 12,
we show results at various times, starting with the initial state.
Again there is no yield variation in the etch rate due to angle
of incidence with the normal; in other words, the speed of the
profile in the normal direction is just the projection of the
directional etch rate in that normal direction. Due to the effects
of shadowing, as the profile evolves we again see that part of
the profile aligns itself tangential to the incoming unidirectional
etching stream.

5.2.3. Wet/Chemical Eiching

Finally, for completeness we consider the case of wet/chemi-
cal etching applied to the above cavity. In Fig. 13, we advance
the profile in its normal direction into the material at unit speed.
One could choose to stop all motion inside a void once it forms
on the basis of visibility, or continue the motion. In the figures
we continued the motion; the other case is easily handled by
a test of the connectedness of a contour.

5.3. Lithography

We begin by using a model Gaussian etch rate function. In
a region which is one unit across and two units in height (the
dotted region in Fig. 14), we use an etch rate of
R = e %05 (cosX6y) + 0.01). (38)
We start with a fiat initial front and allow it to propagate
downwards with etch rate given by the above. In the first column
of Fig. 14, we show the results of mesh refinement of this etch
rate using our first-order method narrow band method. As the
grid is refined, the overshoot that occurs in the leading part of
the propagating front diminishes until the correct solution is
reached. Further refinement of the first-order narrow band
method yields the same converged shape.
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KIS S

T =20

T=400 . T=30
Fig.1la. Fig.11b Fig.lle
T S IR

T=4.0

Figlid.

Fig.lle

FIG. 11.  Etching into cavity.

Next, we study rthe effects of using the fujl level set method
and update all the level sets, not just those in the narrow band.
We repeat the calculation using the full two-dimensional matrix
technique in the second column of Fig. 14. The results on the
coarsest grid is better for the full matrix than the narrow band
approach becavse of the inaccuracy of the reinitialization on
the coarse grid.

T=00
Fig.12a. Fig 124
I =7 e I

T=50

Fig12d. Fig12f

Fig.12e

FIG. 12. Directional etching into cavity.
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T=20 T=30
Fig.1%h

T=40 . T=50
Fig.13d. Fig.13e

T=60
Fig1if

FIG. 13. Chemical etching into cavity.

‘-H] bdfs Seco“n;ina:der : ;abe!!s

|
Full Matriz: 160 Cells Secand Order : 160 Cells

Narrow Band : 160 Cells

FIG. 14. Lithography under model gaussian
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Finally, we analyze the effects of moving to a second-order
in space narrow band scheme. In the last column of Fig. 14,
we use a second-order operator split version of our scheme.
Here, the second-order method achieves the converged shape
on a coarse grid, as expected, verifying that high accuracy can
be obtained in the front motion by using the technology of high
resolution hyperbolic conservation laws. A second order in
time method is possible using the predictor—-corrector method
outlined in [20]. In terms of timings, the narrow band calculation
is around 10 times faster for the finest calculation than the full
matrix solution.

In summary, similar to marker particle and cell methods, the
narrow band approach requires work of order N to advance a
front, where N is the number of cells in one dimension. Minimal
extension is required off the zero level set, and high order
schemes are readily available. The speedup resulting from the
narrow band approach yields a highly competitive method.

6. SOME MODEL PROBLEMS

In this section, we perform some additional experiments to
demonstrate the versatility of the level set approach.

6.1. Wet/Chemical Etching

We provide an example to demonstrate how the level set
approach can follow complex changes in topology, We start
with a square with masks covering segments of the boundary,
and imagine the square surrounded by an etching substance,
In Fig. 15, the etch eats into the non-masked walls, and the
resulting front moves into the region and reconnects with other
parts of the advancing front.

6.2. Sputter Etching/Deposition

In some problems (for example, ion milling), the normal
speed of the profile depends on the angle of incidence between
the surface normal and the incoming beam. This yield function
is often empirically fit from experiment and has been observed
to cause such effects as faceting at corners (see [15, 12]). To
study this phenomenon, in Fig. 16 we consider several from
motions and their effects on corners. We envision an etching
beam coming down in the vertical direction, In all cases under
study here, the angle 8 shown in Fig. 5 refers to the angle
between the surface normal and the positive vertical. For this
set of calculations, in order to examine the geometry of sputter
effects on shocks/rarefaction fan development, we ignore visi-
bility effects. Following our usual notation, let F(8) be the
speed of the front in direction normal to the surface.

In column A we show the effects of purely isotropic motion,
thus the yield function is F = 1. Located above the yield graph
are the motions of an upwards and downwards square wave,
In column B we show the effects of directional motion, thus



140

ADALSTEINSSON AND SETHIAN

FIG. 15, Chemical etching into multiply masked region.

the yield function is F = cos(#). Thus, horizontal components
on the profile do not move, and vertical components move with
unit speed. In column C we show the effects of a yield function
suggested by Leon [14] of the form £ = [1 + 4 sin*(0)] cos(#).

The results of these calculations are shown in Fig. 16. The
results show that the effects of angle-dependent yield functions
are pronounced. In column A the isotropic rate produces smooth
corners, correctly building the necessary rarefaction fans in
outward corners and entropy satisfying shocks in inward corners
as discussed and analyzed in [26, 27]. In column B, the direc-
tional rate causes the front to be essentially translated down-
wards, with some slight rounding of the corners. In column C,
the yield function results in faceting of inward corners where
shocks form and slight overhangs in the construction of rarefac-
tion fans.

These overhangs in fact represent the *wrong* weak solution
to the equations when sharp corners are present; most noticeably
in the case of the construction of rarefaction fans. They in
fact occur because the schemes used so far assume a convex

Hamiltonian, when in fact the sputter function under consider-
ation yields a non-convex Hamiltonian.'

In more detail, start with the level set formulation

¢ + FiVe! = 0, (39)

where ¢ is the level set function and F is the speed in the

normal direction. We may rewrite this in the standard form of
a Hamilton—Jacobi equation, namely

¢+ H(d,, ¢) =0, 4m

where the Hamiltonian H(¢,, ¢} = F(¢? + 1) When the

speed function F does not depend on ¢, or ¢,, it is easy to

check that the Hamiltonian ff is convex. Thus, we can use the
schemes presented earlier; they can be proved to produce the

' We thank O. Hald for his contributions to this analysis of a non-convex
sputter law.
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E———1 =
[=——
) wf4 wf2 0 nid wf2 0 wf4 /2
Yield F(f) =1 Yield F = cos(6) Yield F = [1 +4sin?(8)] cos(6)
Column A Column B Column C

FIG. 16, Effect of different vield functions.

correct viscous solution which satisfies the appropriate en-
tropy condition.

However, consider the case of the sputter function yield
function given by the above, namely

F = (1 + A sin{6)) cos 6, (41)

where § is the angle to the vertical. A = ( produces no angle

dependence, A = 4 produces a typical sputter case. We begin
by writing this in the above form, namely

¢, + FIVP| =+ [(1 + A)cos 0 — Acos’ 01| V| (42)
Noting that cos 8 = ¢,/|V |, some manipulation produces
& + H(d. ¢) =0, (43)

where the Hamiltonian H is now

H=(1+A)¢ — AP

This Hamiltonian is in fact non-convex, and hence different
difference schemes must be employed. We use a second order
in space ENO version of Lax—Friedrichs (see [21]), given by

Dj* + D D7 + DP
§+l=¢ﬂ—At[H( i 5 J’ ¥ > J)

(44)
1 1 ey
— 3 MUD) = Dy) — S MDY — D,-f)],

where M, (M,) is a bound on the partial derivative of the
Hamiltonian with respect to the first (second) argument.

This scheme can be proved to produce the correct viscous
entropy-satisfying solution. When we use this scheme as in the
below calculations given Fig. 17, the comers are sharp in col-
umn B and the overhangs disappear in column C. As a final
test, in Fig. 18, we compare results with those obtained by the
method of characteristics solution (see, for example, [15, 12]),
showing excellent agreement.
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Column A Column B Column C

FIG. 17. Effect of different yield functions: Non-convex scheme.

O

N

Magnification by 3 times
Sgquare in Corner Shows Size of Grid
Lower Curve = Convexr Hemiltonian Scheme
Upper Curve = Non — Conver Hamiltonian Scheme

FIG. 18. Coemparison with method of characteristics.

6.3. Multiple Materials/Discontinuous Etch Rates

Next, we study the effects of etching through diftferent materi-
als. In this example, the etch rates are discontinuous, and hence
sharp corners develop in the propagating profile. The results
of these calculations are shown in Fig. 19. A top material
masks a lower material, and the profile etches through the lower
material first and underneath the upper material. The profile
depends on the ratio of the etch rates. In Fig. 19a, the two
materials have the same etch rate, and hence the front simply
propagates in its normal direction with unit speed, regardless
of which maierial it is passing through. In Fig. 19b, the bottom
material etches four times faster than the top; hence some
degree of penetration underneath the top material accurs, In
Fig. 19c, the ratio is ten to one, and finally, in Figure 19d, the
ratio is forty to one, in which case the top material almost acts
like a mask. .

We next demonstrate the power of the method by considering
etching through multiple materials. In Fig. 20, we show an
etching front moving through blocks of materials with differing
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Etch Ratio =1:1

Etch Ratio =4:1

Eich Ratio =10:1

FEteh Ratio —40:1

FIG. 19. Etch ratio = Bottom material rate to top material rate.

FIG. 20. Etching of multiple materials: Etch rates: A = 0.25, B = 0.5,
= 1.0.

etch rates. The results show the ability of the method to follow
sharp variations in etch rate from material to material.

7. FUTURE WORK

The numerical method presented in this paper can be used
for a wide variety of two-dimensional simulations in etching,
deposition, and lithography; the method naturally takes into
account such effects as incident angles, masks, yield functions,
visibility, and anisotropy on the surface motion. Due to the use
of conservative upwind schemes, the method selects the correct
entropy condition and maintains sharp corners where shocks
in the tangent occurs; conversely, the correct rarefaction fan
solution is built at outward-facing corners. The method is sec-
ond-order accurate in the motion of the front. By using the
narrow band approach, the method is roughly 10 times faster
for a reasonably sized problem than the full matrix method and
is of the same computational work as cell and marker particle
methods; that is, the work is a constant times the number of
points which characterize the evolving front.

The extension of this work to three dimensions is straightfor-
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ward and will be presented in part 11 of this paper (see {2]).
Further work will include surface diffusion effects and
reflection/re-emission issues.

ACKNOWLEDGMENTS

A video tape of the simulations shown here is available on request. All
citlculations were performed at the University of California at Berkeley and
the Lawrence Berkeley Laboratory. We thank B. Coughran, J. Helmsen, O.
Hald, P. Lecen, A. Neureuther, C. Rafferty, J. Rey, V. Singh, K. Smith, and
K. Toh for helpful discussions.

REFERENCES

. D. Adalsteinsson and J. A. Sethian, J. Comput. Phys. 118 (1995).

. D. Adaisteinsson and J. A. Sethian, J. Comput. Phys., to appear.

. A. Bourlioux and J. A. Sethian, in preparation.

. Y. Chen, Y. Giga, and S. Goto, J. Differential Geon. 33, 749 (1991).

. Y. C. Chang, T. Y. Hou, B. Merriman, and §. J. Osher, J. Compur.
Phys., submitted.

6. D. L. Chopp, Comput. Phys. 106, 77 (1993).

7. D. L. Chopp and ). A. Sethian, J. Exp. Math. 2, No. 4, 1993,

8. L. C. Evans and I. Spruck. J. Differential Geom. 33, 635 (1991).
9. M. Grayson, J. Differential Geom. 26, 285 (1987).

10. 1. J. Helmsen, Ph.D. dissertation, EEC, University of California, Berke-
ley, 1994,

11. ). ]. Helmsen and A. R. Neureuther, 3D Lithography Cases for Exploring
Technology Solutions and Benchmarking Simulators, SPIE, Vol. 1927,
Optical/Laser Microlithography VI, p. 382, 1993,

12. 1. V. Katardjiev, G. Carter, and M. J. Nobes, J. Vae. Sci. Technol. A 6(4),
2443 (1988).

13. R. Kimmel and A. Bruckstein, Center for Intelligent Systems Report No.
9209, Technion-Israel Institute of Technology, June 1992,

Rk W R —

14. F. A. Leon, personal communication, 1994,

15. F. A. Loen, S. Tazawa, K. Saito, A. Yoshi, and D. L. Scharletter, Numerical
Algorithms for Precise Calculation of Surface Movement in 3-D Topogra-
phy Simulation, 1993 International Workshop on VLSI Process and Device
Modeling (1993 VPAD).

16. R. Malladi, J. A. Sethian, and B. C. Vemuri, Center for Pure and Applied
Mathematics, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, Vol. 17, No. 2, 1995.

ADALSTEINSSON AND SETHIAN

17. 1. P. McVittie, J. C. Rey, A. J. Bariya, and others, “*SPEEDIE: A Profile
Simulator for Etching Deposition, in Proceedings of the SPIE—The Inter-
national Society for Optical Engineering, 1991, Vol. 1392, p. 126.

18. 1. P. McVitie, I. C. Rey, L. Y, Cheng, and M. M. IslamRaja. “LPCVD
Profile Simulation Using a Re-emission Model,”” in International Electron
Devices Meeting 1990, Technical Digest, New York (IEEE, New York,
1990), p. 917.

19. W.Malder, S, J. Osher, and J. A, Sethian, J. Comput, Phys. 100,209 (1992),
20. 8. Osher and J. A. Sethian, J. Comput. Phys. 79, 12 (1988).
21. 8. Osher and C. Shu, J. Comput. Phys. 28, 907 {(1991).

22. 1. C. Rey, L. Y. Cheng, J. P. McVittie, and K. C. Saraswat, J. Vac. Sci.
Technol. A %(3), 1083 (1991).

23, C. Rhee, L. Talbot. and J. A. Sethian, J. Furip Mechanics, 1995 to appear.

24. E. W. Scheckler, Ph.D. dissertation, EECS, University of California,
Berkeley, 1991.

25. E. W. Scheckler, K. K. H. Toh, D. M. Hoffstetter, and A. R. Neureuther,
**3D Lithography, Etching and Deposition Simutation,”” in Symposium on
VLSI Technology, Oisio, Japan, 1991, p. 97.

26. J. A. Sethian, Ph.D. dissertation, Dept. of Math., Mathematics, University
of California, Berkeley, 1982.

27. 1. A. Sethian, Commun. Math. Phys. 101, p. 487 (1985).

28. J. A. Sethian, J. Differential Geom. 31, 131 (1990).

29. 1. A. Sethian, *‘Numerical Methods for Propagating Fronts,”* in Variational
Methaods for Free Surface Interfuces, edited by P. Concus and R. Finn
(Springer-Verlag, New York, 1987).

30. 1. A. Sethian, J. Comput. Phys. 115, 1994.

31. J. A. Sethian, work in progress.

32. J. A. Sethian, submitted.

33, J. A. Sethian and J. D. Strain, J. Comput. Phys. 98, 231 (1992).

34. V. K. Singh, S. G. Shagfeh, and J. P. McVittie, J. Vac. Sci. Technol. B.
10(3), 1091 (1993},

35. K. K. H. Toh, Ph.D. dissertation, EECS, University of California, Berke-
ley, 1990

36, K. K. H. Toh and A. R. Neureuther, ‘*Three-Dimensional Simulation of
Optical Lithography,”” in Proceedings SPIE, Optical/Laser Microlithogra-
phy IV, 1991, Vol. 1463, p. 356,

37. M. 8. Young, D. Lee, R. Lee, and A. R. Neureuther, ““Extension of
the Hopkins Theory of Partially Coherent Imaging to Include Thin-Film
Interference Effects,”” in SPIE Optical/Laser Microlithography VI, 1993,
Yol. 1927, p. 452.

38. J. Zhu and I. A. Sethian, J. Comput. Phys. 102, 128 (1992).



